Planarization of Silicon Dioxide and Silicon Nitride Passivation Layers
نویسندگان
چکیده
منابع مشابه
MICROSTRUCTURAL STUDY OF SILICON NITRIDE WHISKERS PRODUCED BY NITRIDATION OF PLASMA-SPRAYED SILICON LAYERS
plasma-sprayed silicon layers have been used to produce silicon nitride layers with fibrous microstructure which optimizes fracture toughness and strength. SEM examination of the specimens shows that the surface is covered by fine needles and whiskers of Si3N4.In order to study the oxygen contamination effect as well as other contaminants introduced during spraying and nitridation processes, su...
متن کاملSolution-processed amorphous silicon surface passivation layers
Amorphous silicon thin films, fabricated by thermal conversion of neopentasilane, were used to passivate crystalline silicon surfaces. The conversion is investigated using X-ray and constant-final-state-yield photoelectron spectroscopy, and minority charge carrier lifetime spectroscopy. Liquid processed amorphous silicon exhibits high Urbach energies from 90 to 120 meV and 200 meV lower optical...
متن کاملPattern Photoresist Silicon Silicon Nitride Silicon Photoresist Silicon Nitride Silicon Etch Nitride Remove Photoresist
In this proposal we seek to establish a porous silicon based etching process in the WTC microfabrication laboratory. The new process will allow us to etch high aspect ratio holes through a wafer. Holes like these are important for decreasing the dead volume of connections between micro and macro systems and for increasing the complexity of micro-fluidic systems. At the present time, the minimum...
متن کاملHighly selective etching of silicon nitride over silicon and silicon dioxide
A highly selective dry etching process for the removal of silicon nitride ~Si3N4) layers from silicon and silicon dioxide (SiO2) is described and its mechanism examined. This new process employs a remote O2 /N2 discharge with much smaller flows of CF4 or NF3 as a fluorine source as compared to conventional Si3N4 removal processes. Etch rates of Si3N4 of more than 30 nm/min were achieved for CF4...
متن کاملThin, Transferred Layers of Silicon Dioxide and Silicon Nitride as Water and Ion Barriers for Implantable Flexible Electronic Systems
High performance, flexible integrated electronic/optoelectronic systems offer powerful capabilities in a range of important applications, from devices for neuromodulation and bioelectronic medicines, to advanced surgical diagnostic systems to tools for biomedical research. Some of the most sophisticated systems use ultrathin inorganic active materials (e.g., nanomembranes of silicon, and others...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2007
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/61/1/208